This is the last in a series of three exercices de style to show some interesting aspects of the game of hats: a puzzle which was initially proposed by Lionel Levine.
Here we look at case where each player has a tower of countably infinitely many hats on their head and try constructing efficient strategies from the results of the first exercice.
Definitions and notations
Towers and strategies
We use notations inspired by .
Let $\mathbb{T}_{<\mathbb{N}}$ denote the set of all towers of finite height and $\mathbb{T}_{\mathbb{N}}$ the set of towers of countably infinite height.
\begin{align}
\mathbb{T}_{<\mathbb{N}}
&\stackrel{\text{def}}{=}\bigcup_{n\in\mathbb{N}} \mathbb{T}_n\\
\mathbb{T}_{\mathbb{N}}
&\stackrel{\text{def}}{=}[2]^{\mathbb{N}}
\end{align}
$\mathbb{T}_{<\mathbb{N}}$ is countable but $\mathbb{T}_{\mathbb{N}}$ has the cardinality of the real line. $\mathbb{T}_{\mathbb{N}}$ is also known as the Cantor space.
Let $\mathbb{S}_{\mathbb{N}}$ denote the set of strategies for the game of hats with towers of countably infinite height. A (symmetric) strategy maps a tower to a chosen position:
\begin{align}
\mathbb{S}_{\mathbb{N}}
&\stackrel{\text{def}}{=}{\mathbb{Z}}^{\mathbb{T}_{\mathbb{N}}}
\end{align}
$\mathbb{S}_{\mathbb{N}}$ has cardinality strictly greater than the real line.
Hit set and win rate
With infinite towers we can still use $\eta_{t,u}(s)$ to denote the outcome of applying strategy $s\in\mathbb{S}_{\mathbb{N}}$ to the configuration $(t,u)$, however it is no longer possible to calculate the hit score as a sum and the win rate as a mean value.
We substitute with $\eta(s)$, the hit set of strategy $s$:
\begin{equation}
\eta(s)\stackrel{\text{def}}{=}\{(t,u)\in\mathbb{T}_{\mathbb{N}}\times\mathbb{T}_{\mathbb{N}}\mid\eta_{t,u}(s)=1\},
\end{equation}
and write $\mu(s)$ for the win rate of strategy $s$, defined as the Baire/Borel measure of $\eta(s)$ in the space $\mathbb{T}_{\mathbb{N}}\times\mathbb{T}_{\mathbb{N}}$ (when it is measurable).
\begin{equation}
\mu(s)\stackrel{\text{def}}{=}\mu(\eta(s)).
\end{equation}
Embedding
For convenience we identify the towers in $\mathbb{T}_n$ with towers in $\mathbb{T}_{\mathbb{N}}$ (by completing with black hats) and the strategies in $s\in\mathbb{S}_n$ with strategies in $s\in\mathbb{S}_{\mathbb{N}}$ (by discarding hats at position $n$ and beyond).
Thus we loosely write $s(t)$ and $eta_{t,u}(s)$ even when $s$, $t$ and $u$ are a mix of finite/infinite strategies and towers.
\begin{align}
\forall i<j, \;\;
\left\{
\begin{array}{l}
\mathbb{T}_i
\subset \mathbb{T}_j
\subset \mathbb{T}_{<\mathbb{N}}
\subset \mathbb{T}_{\mathbb{N}}\\
\mathbb{S}_i
\subset \mathbb{S}_j
\subset \mathbb{S}_{\mathbb{N}}\\
\end{array}
\right.
\end{align}
Limits
Infinite towers as limits of finite towers
Every tower $t\in\mathbb{T}_{\mathbb{N}}$ is the limit of a sequence of towers in $\mathbb{T}_{<\mathbb{N}}$ (with the topology of the Cantor space).
Proof: if $s\!\mid\!k$ denotes the initial segment of $s$ of size $k\in\mathbb{N}$, then:
\begin{equation}
s = \lim_{n\to\infty} s\!\mid\!n
\end{equation}
In fact, we can view $t\in\mathbb{T}_{\mathbb{N}}$ as the Cauchy completion of $t\in\mathbb{T}_{<\mathbb{N}}$.
Finite strategies are continuous
A finite strategy $s\in\mathbb{S}_n$, embedded into $\mathbb{S}_{\mathbb{N}}$ as a mapping $s: \mathbb{T}_{\mathbb{N}} \to \mathbb{Z}$, is continuous.
Limits of strategies
Here we allow strategies as functions $s: \mathbb{T}_{\mathbb{N}} \to \mathbb{Z}$ with partial domain.
Given a sequence $s_n\in\mathbb{S}_{\mathbb{N}}$ we define its pointwise limit:
\begin{align}
\lim (s_n):\; &\big\{t\mid \lim_{n\to\infty} s_n(t)\text{ exists}\big\} \to \mathbb{Z}\\
&\;t \mapsto \lim_{n\to\infty} s_n(t) \nonumber
\end{align}
It is natural to try constructing efficient infinite strategies as limits of finite strategies.
Type | Win rate | Domain | Computable | |
---|---|---|---|---|
$0_\omega$ | Constant | $1 \over 4$ | $\mathbb{T}_{\mathbb{N}}$ | on $\mathbb{T}_{\mathbb{N}}$ |
$\mathbf{W}_\omega$ | Lowest white | $1 \over 3$ | $\mathbb{T}_{\mathbb{N}}\setminus\{(0,0,\cdots)\}$ | on its domain |
$\mathbf{B}_\omega$ | Lowest black | $1 \over 3$ | $\mathbb{T}_{\mathbb{N}}\setminus\{(1,1,\cdots)\}$ | on its domain |
$\mathbf{C}_\omega$ | Carter | $7 \over 20$ | $\mathbb{T}_{\mathbb{N}}$ | on $\mathbb{T}_{\mathbb{N}}\setminus$ $\{(0,0,\cdots),$ $(1,1,\cdots)\}$ |
$\mathbf{R}_\omega$ | Reyes | $7 \over 20$ | $\big\{t\in\mathbb{T}_{\mathbb{N}}\mid\exists k,$ $\text{ card}\{t_{3k},t_{3k+1},$ $\:t_{3k+2}\}\neq1\big\}$ | on its domain |
Infinite lowest-white strategy
Consider the infinite lowest-white strategy $\mathbf{W}_\omega$:
\begin{equation}
\mathbf{W}_\omega \stackrel{\text{def}}{=} \lim_{n\to\infty} \mathbf{W}_n
\end{equation}
$\mathbf{W}_\omega$ has win rate $1\over3$.
Proof
Considering all towers in $\mathbb{T}_{\mathbb{N}}$, let’s represent the combined output of the $\mathbf{W}_n$ strategies as a tree, as shown in the picture below:
Let’s denote in gray the points where the pointwise limit is reached:
We see that $\mathbf{W}_\omega=\lim(\mathbf{W}_n)$ is defined almost everywhere1 with respect to the Baire/Borel measure, and we can squeeze its hit set the following way:
\begin{equation}
I_k \subset \eta(\mathbf{W}_\omega) \subset S_k
\end{equation}
where:
$$
\left\{
\begin{array}{l}
I_k = \eta(\mathbf{W}_k) \setminus U_k\\
S_k = \eta(\mathbf{W}_k) \cup U_k\\
U_k = \big\{(t,u)\mid \text{ card}\bigcup_{i\geq k}\{\mathbf{W}_i(t)\}\neq1
\text{ or card}\bigcup_{i\geq k}\{\mathbf{W}_i(u)\}\neq1\big\}
\end{array}
\right.
$$
$I_k$ is an increasing sequence of sets and $S_k$ is a decreasing sequence, with $\lim_{k\to\infty} \mu(U_k) = 0$, $\lim_{k\to\infty} \mu(I_k) = 1/3$, $\lim_{k\to\infty} \mu(S_k) = 1/3$, hence $\mu(\mathbf{W}_\omega) = 1/3$. $\quad \Box$
Note (as shown in the picture below) that $\mathbf{W}_\omega$ is a computable function and can be written as a finite automaton that processes the stream of hats from $t\in\mathbb{T}_{\mathbb{N}}$:
Infinite Carter strategy
Consider the infinite Carter strategy $\mathbf{C}_\omega$:
\begin{equation}
\mathbf{C}_\omega \stackrel{\text{def}}{=} \lim_{n\to\infty}
\mathbf{X}_n,
\end{equation}
where:
$$
\left\{
\begin{array}{l}
\mathbf{X}_{2k-1} = \mathbf{C}_k\!\mid\!(2k-1)\\
\mathbf{X}_{2k} = \mathbf{C}_k\!\mid\!(2k)
\end{array}
\right.
$$
$\mathbf{W}_\omega$ has win rate $7\over20$.
Proof
Considering all towers in $\mathbb{T}_{\mathbb{N}}$, let’s represent the combined output of the $\mathbf{X}_n$ strategies as a tree, as shown in the picture below:
Let’s denote in gray the points where the pointwise limit is reached:
We see that $\mathbf{C}_\omega=\lim(\mathbf{X}_n)$ is defined everywhere, and we can squeeze its hit set the following way:
\begin{equation}
I_k \subset \eta(\mathbf{C}_\omega) \subset S_k
\end{equation}
where:
$$
\left\{
\begin{array}{l}
I_k = \eta(\mathbf{X}_k) \setminus U_k\\
S_k = \eta(\mathbf{X}_k) \cup U_k\\
U_k = \big\{(t,u)\mid \text{ card}\bigcup_{i\geq k}\{\mathbf{X}_i(t)\}\neq1
\text{ or card}\bigcup_{i\geq k}\{\mathbf{X}_i(u)\}\neq1\big\}
\end{array}
\right.
$$
$I_k$ is an increasing sequence of sets and $S_k$ is a decreasing sequence, with $\lim_{k\to\infty} \mu(U_k) = 0$, $\lim_{k\to\infty} \mu(I_k) = 7/20$, $\lim_{k\to\infty} \mu(S_k) = 7/20$, hence $\mu(\mathbf{C}_\omega) = 7/20$. $\quad \Box$
Note (as shown in the picture below) that $\mathbf{C}_\omega$ is a computable function almost everywhere2 and can be written as a finite automaton that processes the stream of hats from $t\in\mathbb{T}_{\mathbb{N}}$:
Infinite Reyes strategy
Consider the infinite Reyes strategy $\mathbf{R}_\omega$:
\begin{equation}
\mathbf{R}_\omega \stackrel{\text{def}}{=} \lim_{n\to\infty}
\mathbf{X}_n,
\end{equation}
where:
$$
\left\{
\begin{array}{ll}
\mathbf{X}_{3k-2} &= \mathbf{C}_k\!\mid\!(3k-2)\\
\mathbf{X}_{3k-1} &= \mathbf{C}_k\!\mid\!(3k-1)\\
\mathbf{X}_{3k} &= \mathbf{C}_k\!\mid\!(3k)
\end{array}
\right.
$$
$\mathbf{W}_\omega$ has win rate $7\over20$.
Proof
Considering all towers in $\mathbb{T}_{\mathbb{N}}$, let’s represent the combined output of the $\mathbf{X}_n$ strategies as a tree, as shown in the picture below:
Let’s denote in gray the points where the pointwise limit is reached:
We see that $\mathbf{R}_\omega=\lim(\mathbf{X}_n)$ is defined almost everywhere3, and we can squeeze its hit set the following way:
\begin{equation}
I_k \subset \eta(\mathbf{C}_\omega) \subset S_k
\end{equation}
where:
$$
\left\{
\begin{array}{l}
I_k = \eta(\mathbf{X}_k) \setminus U_k\\
S_k = \eta(\mathbf{X}_k) \cup U_k\\
U_k = \big\{(t,u)\mid \text{ card}\bigcup_{i\geq k}\{\mathbf{X}_i(t)\}\neq1
\text{ or card}\bigcup_{i\geq k}\{\mathbf{X}_i(u)\}\neq1\big\}
\end{array}
\right.
$$
$I_k$ is an increasing sequence of sets and $S_k$ is a decreasing sequence, with $\lim_{k\to\infty} \mu(U_k) = 0$, $\lim_{k\to\infty} \mu(I_k) = 7/20$, $\lim_{k\to\infty} \mu(S_k) = 7/20$, hence $\mu(\mathbf{R}_\omega) = 7/20$. $\quad \Box$
Note (as shown in the picture below) that $\mathbf{R}_\omega$ is a computable function on its definition domain and can be written as a finite automaton that processes the stream of hats from $t\in\mathbb{T}_{\mathbb{N}}$:
Laisser un commentaire